
MATHEMATICS OF COMPUTATION 
VOLUME 38, NUMBER 157 
JANUARY 1982 

Integrals of Jacobi Functions 

By Shyam L. Kalla, Salvador Conde and Yudell L Luke 

Abstract. In this paper, we study f (1 - x)a(1 + x)bP(a ")(x) dx and its partial deriva- 
tives with respect to a and b, where P(a#)(x) is the Jacobi function. Our expressions 
generalize the work of Blue, Gautschi and Gatteschi. The results are useful to derive 
integration formulas for integrands with algebraic and logarithmic singularities. 

1. Introduction. In a previous paper Blue [2] gave a simple expression for 
fJ (ln x)Rn(x) dx, where Rn(x) = Pn(2x - 1) is the shifted Legendre polynomial. 
In a follow-up note on this paper, Gautschi [4] treated 

f { ln(1 + t)}( + t)bP"(t) dt, 

where PJ(t) is the Legendre function which reduces to the Legendre polynomial if v 

is a positive integer. More recently Gatteschi [3] studied 

xP(I - x)a(ln x)R(aP)(x) dx, 
0 

where R4afi)(x) = P(afi)(2x - 1) is the shifted Jacobi polynomial. The purpose of 
this paper is to generalize the above results by examining the integral 

(1) lab = f (1 X)a(l + X)bP(a,,)(X) dx, R(a) > -1, R(b) >-1, 
vaI -1a 

-1 ()> 

and its partial derivatives with respect to a and b, where 

(2) p(a)(x) = + I) F' ', 2 + 2 , a + +1, 
F(v + 1) 21 a+ 1 2 

is the Jacobi function. Here and throughout this paper, we follow the notation of 
Luke [5], [6] and assume the parameters are such that the expressions make sense. 
Note that the 2F, in (2) is unchanged if v is replaced by - - X. It is convenient 
to introduce 

(3) Lpa = (3+ l)f) I (1- X)a(l + x)b 2F( P + 1 + X) dx = Iba 'ao F(v + 1) -1 8+ lf'f 

valid under the same conditions as for (1). 
If v is a positive integer or zero, call it n, then it follows from Luke [5, Volume 1, 

p. 70, Eq. (4)] that 

(4) p(a/I)(x) = ( )n(f + )n F) / 
nn 

+A| 2 1' 
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and this together with (2) gives 

(5) pn(a3 (x) =( ) PnP, ')( X). 

Consequently 

(6) Ia,b ( -)fnjb,B a= (-)nL a, b 

We can call (1) a beta integral of the Jacobi function. The beta integral of the 
Legendre function suitably modified by a constant multiplier is also included in (1) 
since the Legendre function on the cut is defined by 

PIL(X) = r( I - IL)] [(I + X)/ (I - x) ] P/2 

(7) X (-, v +I | x) 1 1 

By virtue of a Kummer transformation formula, we can write 

(8) P(a/O)))= (a +I)v( 1 + x>-0Fi(a + 1 + p, - p - /3 1- (x) r( + I) (2 ) 2 1 a + 12 

Similarly, 

(9) PPL(x) =Er(i - 1)2(1 - x2) /22F( 1 + 'IL -L - | 2x 
tL 2f 

In what follows, we deal principally with (1). We have need for the beta integral 

(1 - t)P(l + t)71 dt = 2q+P+ lf| t(1- t)P dt 
(10) - 

2'71+F(q + 1)F(p + 1) , R(p) > -1, R(q1) > -1. 
F(q1 + p + 2) 

2. I,,ab and Related Integrals. From (1) and (2), using termwise integration and 
(10), we get 

ja b _ 2a+b+ F(a + I)F(b + 1)(a + 1), v, p + X, a + 11 (11) .a/I Fr( + I)r(a+ b+ 2) 32ka + l, a+b b+ 2)' 

R(a) > - 1, R(b) > -1. 

If the above 3F2 does not terminate, then, to insure absolute convergence, we must 
require R(b + 1 - /) > 0. Again the above 3F2 is unchanged if v is replaced by 
- - X. By a partial differentiation of (1) and (11) with respect to a, we have 

b 
_____ -' {ln(I - x)}(1 - X)a(1 + X)bP(af3)(X) dx 

=ln 2 + 4(a + 1)- 4(a + b + 2)]Ipa,b 

+ 2a+b+ F(a + i)r(b + l)(a + 1) (-P)k(l + X)k(a + l)k 
F(P + I)F(a + b + 2) k=l (a + l)k(a + b + 2)A:Ik! 

x> {i(a + 1 + k) - 41(a + 1) - 4i(a + b + 2 + k) + 4(a + b + 2)). 
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Also 

da,b 

(13) Kab ab 
f {ln(I + x)}(l -x)a( + x) P )(x) dx 

ab 

so that if v is n, 

a a 
0 (-\najnb,a 

(14) Kab 
a, 

()njba 
n,af - n3a' 

It follows that 

Sa,b= f {ln(l - x2))(1 - X)a(l + X)bP(af )(x) dx 
(15) 1 

J a,b + Ka,b 

(16) Tva's f {ln(1 - x)/ (1 + x)}(1 - X)a(l + X)bP(a,)(X) dx 
_= jab - -a,b 

Hence, if a = b and a = , 

(17) Sa,a = 0 if n is odd, 
= 2Ja,a if n is even, 

(18) T"nTa,a = 0 if n is even, 
= 2Ja, a if n is odd. 

Replace x by 2x -1 in the integral in (12). Then 

(19) 'a, = (ln 2) 'ak/ + WPa,8 

(20) Wp a/ = 2 f {ln(I - x)}(1 - X)a x bR(a)(x) dx, 

where R$a O)(x) = PP(a/)(2x - 1) is the shifted Jacobi function. Notice that 

(21 ) Wa,b = (_)nWb,a + Ta,b 

Thus evaluation of (20) follows from that of Ipajb,B and its partial derivative with 
respect to a. 

An alternative representation for (1) follows from (8) and (10) by termwise 
integration. Thus 

Iab - 2a+b+ '(a + 1)PF(b + 1 - 3)F(a + 1) 
(22) ~ ~ po of -o r(p + I)F(a + b + 2 - 8l) 

(22) va/ (+)(++-3 

x F - 
- /3, v + a + 1, a +1I 3 2( 

a + 1, a + b + 2- ) 

which is advantageous if P + /8 is a positive integer or zero. 
Since the Jacobi polynomial can also be written as 

(23) p(a/I)(x) 2-n X _n + an)(n + f)( - )n-k(X + I)k 
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we have the expansions 

nab _ 2a+b+ (-)n (b + 1)(J3 + I)nF(n + a + 1) 
(24) ',p n!r(n + a + b + 2) 

X3F2-n, 
- n a, b + 

|1 
-n- a,/3 +I 

jna,b= [In 2 + 4i(n + a + 1)- i4(n + a + b + 2)1 b 

(25) + 2a+b+1(_)nr(b + 1)(f3 + I)nr(n + a + 1) 
n!r(n + a + b + 2) 

knO (-n)k(-n -a)k(b + O)k 

We have given two formulas for Ia,b for v arbitrary and a third when v is a 
positive integer n. Actually there are other repesentations which are a consequence 
of known relations between 3F2's of a unit argument. For a thorough treatment of 
this subject, see the volumes by Bailey [1], Luke [5], and Slater [7]. Equations (11) 
and (22) follow from 

(u,v, w ]F(x)F(S) u,y - v,y - w 

(26) 3F X,,y -F(x-u)F(s + u) 3 y, Y U 

s = x + y u - V - W. 

The series on the left is absolutely convergent if R(s) > 0, while the same is true for 
that on the right if R(x - u) > 0. Since the 3F2 on the right does not possess all 
the symmetry properties of that on the left, there are six different equations. In the 
case of (11), we need record only four of these since the 3F2 is invariant when v is 
replaced by - z - X. Let 

(27) U =3F2(a + X a + I)I R(b + I - ) > O. 

Then 

(a + b + 2-13)p ( 1- , p + a + 1, a + I 

(28) (b+ 3 I3) a + 1, a + b + 2-/ )' 
R(b) > -1, 

1y = (-p + b + -f)^ FI - 
-v,-z, - /a -a 

(29) (a + b + 2), 3 2 a + 1, - p + b + I1- / 
R(P + a + b + 2) > 0, 

U F(a + ( )F(b + I - 8) 
IF(a - a)F(a + b + 2 - 1) 

(30) b 2,b 2 I 

x 3F2( + b + 2 -/a + b + 2 1), R(,-a)>O, 

u- F(a+I)F(b+I- f) p +X,p+a+b+2,b+1 
I 

(31) F( - - -f)F( + a + b + 2) 3 2 p+a + b+2,a+b+2 

R(P + 1) > 0. 
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Another general formula is 

F a, b, c 1 F(e)F(f)F(s) 3F2 
e - a -a, s 

(32) 3 e,f I F(a)F(s+ b)F(s + c) \ s + b,s + c 

s = e +f - a - b - c. 

Using (27) and (32) with a replaced by a + 1, b = -v, c = z + X, e = a + 1, and 
f = a + b + 2, and the reflection formula for gamma functions, we get 

U- F(a + )F(a + b + 2)F(p + - b)sin 7( + fB - b) 

(33) r(a + I)r(,B - b)r(p + a + b + 2)sin ?T(,B - b) 

X 3F2( 
a a v b+1-f3, b+ I+b+2 )' R(a +1)>O0. 

-32 _ + b + I -B fl, + a + b + 2 ) 

In view of symmetry, two other forms can be deduced from (32). They do not 
appear to be interesting and so are omitted. The above forms are valuable because, 
for special values of the parameters, one of the 3F2's might terminate or might be 
easily summed in terms of gamma functions. In illustration, U as given by (27) 
terminates if v is a positive integer; likewise for (28) if v + /8 is a positive integer. 
Thus, if none of the numerator parameters in (28) is a negative integer, but v + /8 is 
a negative integer, then (28) is preferred over (27). Again for special values of the 
parameters, one of the 3F2's might reduce to a 2F, which can always be summed. In 
this connection both (11) and (22) simplify if a = a. The 3F2 on the left of (26) is 
said to be Saalschutzian if s = 1. If, in addition, the 3F2 terminates, then it can be 
summed. 

Another representation for Iv a:i,, follows from a formula which expresses a 3F2 of 
unit argument in terms of two other 3F2's of unit argument; see [5, Volume 1, p. 
104, Eq. (11)]. Application of this result when b and v are positive integers has been 
discussed by Luke [5, Volume 1, pp. 281-283]. We have made no attempt to give 
all possible representations for I^aa,b which ensue from transforms of 3F2's of unit 
argument. To get other formulas, see the discussion given in [5, Volume 1, pp. 
103-109]. 

3. Special Cases. In this section, we illustrate simplified forms which emerge from 
the formulas in the last section. Let a - a = -m, m a positive integer or zero. 
Then, from (11) and (29), we get with the aid of the reflection formula for gamma 
functions 

ja+m,b 
= 

2m+a+b+1F(b + 1)r(m + a + 1)r(v + a + 1)F(v + , 
- b)sin s(v + ? - b) 

v,a,,8-;1- rF(a + 1)F(3- b)F(v + 1)F(v + m + a + b + 2)sin 7T(f3 - b) 

(34) 
x - p v+b+I ,a + 1 

If m = 0, this becomes 

( a.b 2a+b+lF(b + i)r(p + a + I)rF( + / - b)sin r(P + 3 - b) 
PaI F(fB - b)F(p + I)F(P + a + b + 2)sin ?T(,f - b) 

a result which follows directly from (11) or (22) since the 3F2's in each of these 
formulas becomes a 2F, of unit argument. The same result also follows from (31). 
With v = n, (35) reduces to the form given by Gatteschi [3]. If a = ,B = 0 in (35), 
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we get the result given by Gautschi [4]. We also have 

(36) - 2F(f3 + i)Fr(v + a + I)sini?T v,,f3I rvr(p + X+ 1) 

which vanishes if v is an integer, zero excluded. 
If v is a positive integer n, the 3F2 in (11) terminates. If further b = 1B, it is 

Saalschutzian and so can be summed. We find 

2 +a+ r(a + i)r(n + , + i)r(n + a-a) 
(373 "'a'n!r(n + , + a + 2)r(a-a) 

When v is a positive integer n, two other special cases follow upon application of 
results given by Luke [6, p. 165, Eqs. (12) and (13)]. (There in Eq. (12), the 
numerator of the right-hand side should be multiplied by n!.) These equations are 
omitted. 

4. Computation by Use of Recursion Formulas. In [5, Volume 2, p. 147, Eqs. 
(64)-(66)], it is shown that 

(38) f 3 F' -V, 
v + X, a + 1 a + 1, a + b + 2 

satisfies a third order difference equation in v of the form 
3 

(39) fv+ E E>f- =O 
j=1 

In the cited reference, we must put z = 1 and correlate the notation. There n is 
used in place of v. However, the results hold for n arbitrary. We suppose, of course, 
the parameters are such that all expressions make sense. In theory, if we have a set 
of functions f,,+, which satisfy (39) for r = 0, 1, 2, we can use the recursion relation 
to evaluate fv+m, m = 3, 4, ... or m = - 1, -2 .... However, in practice 
difficulties might arise due to growth of round-off error. This subject has been 
rather thoroughly discussed in the literature and we shall not present complete 
details as it applies to the problem at hand. In this connection, see Luke [5], [6] and 
the references given there. In general, use of the recursion formula in the forward 
(backward) direction is stable if applied to the dominant (subdominant) solution. If 
the solution is neither dominant nor subdominant neither technique is stable and 
certain modifications must be made. For the case at hand, the three solutions of 
(39) all have algebraic behavior for v large. Indeed for v a large positive integer 
-* + xo there are three solutions proportional to g1 = 1, g2 = cos vz and g3 = 

v cos v7T. We have not determined which corresponds tofu. However, no member of 
the set of solutions is decidedly dominant or subdominant to the others in that for 
v large, I 12/911 , I g2/g31 - 1 /v. Consequently satisfactory results can be 
achieved by use of the recursion formula in the forward direction for moderately 
large v provided normal round-off error controls are used. 

Partial derivatives of f, with respect to any of the parameters can also be 
evaluated by recursion. From (39), for example, 

3 3 

g" + E EJg -j + E ),f, = 0, 
(40) j=1 

ajV aE. 
g,=- af Fj= a 

' 91-aa' ' aa 
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We now outline an alternative scheme to compute f, by recursion. It is conveni- 
ent to generalize and consider 

(41) Gm M! ?'l /k2, 13z 
(41) Gm (\, 3F2 m + P, 1 

(V1Jm 1' 2/ 

We will derive a three-term recursion formula for Gm. For a sufficiently large 
integer K evaluate GK +1 and GK by means of the series (41). Then use the recursion 
relation in the backward direction to get GK-, GK-2 . . ., Go. By proper identifi- 
cation of the parameters, GO= f,. To get the recursion formula use [5, Volume 2, 
pp. 135-137, Eqs. (8), (12)-(16)] with 

(42) 1 = 1, s = 3, r = 2, t = 4, z replaced by z/ Xand A -x, 

= 1 + a1 - bi, i = 1, 2, 3; v, = 1 + a1,,2= 1 + a -a2. 

Then in that notation A4 O-0 and 

Gm + (A1 + ZBI)Gm_I + (A2 + ZB2)Gm-2 + (A3 + ZB3)Gm-3 = O 
m 

Al -(m - 1 + b) [((m - 2 + bs) - (m - 1 + b) 

B =m(m 
- 1 + a) 

(mr- I + bs) 
(43) _ mm-1 

A2 - 2(m 1 + b ) [(i-3 + b)-2(m - 2 + bS) + (m - 1 + 

B2- m(m- 1) (2m + a + a2 + 3), 

33 -A 3 m(m- 1)(m -2) 

(m- 1 + bs) 

Here (m + p + bs) stands for the product 

(m + p + b1)(m + p + b2)(m + p + b3), 

and (m + p + ar) stands for (m + p + al)(m + p + a2), where p is arbitrary. This 
is a four-term recursion formula. If z = 1, the coefficient of Gm_3 is nil and we get 
the three-term expression 

(44) Gm + WIGmI + W2Gm2 =O, Wi = Ai + Bi i = 1, 2. 

For the application at hand, 

(45) a, = a + b + 1, a2 = a + b + 1-oa, 
b1 = a + b + 2 + v, b2 = a + b + 2-v-A, b3 = b + 1, 

where A is now a new parameter. We are indebted to Professor Jet Wimp for the 
ideas of (41)-(44). He has also proved the following useful result with z = 1. Let 
R1, R2 be the smallest positive integers such that 

(46) -R1 <pA, vj<R2, i=1,2,3, j= 1,2, 

and set 

(47) P = 2R1 + 3R2. 
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Let M be an integer (M > 1) such that 

(48) KM 12 
(M),,+p( - 4) < 

M - 1 ;i+~ 27) 

(49) K = ___2(31T)1/21](V2)1 

where e is the desired accuracy. Since M will usually be rather large, we can replace 
(48) by 

(50) KMit, + P- 1/2(4/27)M <f 

Compute 

=2M+R1+2j lk 2)k(f3k (51) Gm*+- = E ( II)(2k(/3kj= 0 I 
k=O (Pi + M + P + j)k(v2)kk! j=0,1 

and GK from 

(52) GK=-W1GK- W2G*2, K=M+P- I,M+P-2, ... 0. 
Then 

(53) Go = GO + EO(M')), M- X), 7 = max(l, 2 - P2). 

The above ideas can be applied to get partial derivatives as in the discussion 
surrounding (38)-(40) We omit the details. 
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